首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11595篇
  免费   1996篇
  国内免费   1286篇
化学   5278篇
晶体学   76篇
力学   2182篇
综合类   62篇
数学   1428篇
物理学   5851篇
  2024年   22篇
  2023年   154篇
  2022年   288篇
  2021年   489篇
  2020年   529篇
  2019年   500篇
  2018年   389篇
  2017年   423篇
  2016年   611篇
  2015年   504篇
  2014年   653篇
  2013年   1150篇
  2012年   686篇
  2011年   728篇
  2010年   639篇
  2009年   769篇
  2008年   793篇
  2007年   809篇
  2006年   707篇
  2005年   547篇
  2004年   423篇
  2003年   400篇
  2002年   375篇
  2001年   318篇
  2000年   311篇
  1999年   235篇
  1998年   226篇
  1997年   156篇
  1996年   142篇
  1995年   132篇
  1994年   140篇
  1993年   103篇
  1992年   77篇
  1991年   66篇
  1990年   54篇
  1989年   48篇
  1988年   39篇
  1987年   43篇
  1986年   26篇
  1985年   29篇
  1984年   24篇
  1983年   17篇
  1982年   25篇
  1981年   8篇
  1980年   6篇
  1979年   14篇
  1978年   9篇
  1976年   9篇
  1971年   6篇
  1957年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Combustion instabilities depend on a variety of parameters and operating conditions. It is known, especially in the field of liquid rocket propulsion, that the pressure loss of an injector has an effect on its dynamics and on the coupling between the combustion chamber and the fuel manifold. However, its influence is not well documented in the technical literature dealing with gas turbine combustion dynamics. Effects of changes in this key design parameter are investigated in the present article by testing different swirlers at constant thermal power on a broad range of injection velocities in a well controlled laboratory scale single injector swirled combustor using liquid fuel. The objective is to study the impact of injection pressure losses on the occurrence and level of combustion instabilities by making use of a set of injectors having nearly the same outlet velocity profiles, the same swirl number and that establish flames that are essentially identical in shape. It is found that combustion oscillations appear on a wider range of operating conditions for injectors with the highest pressure loss, but that the pressure fluctuations caused by thermoacoustic oscillations are greatest when the injector head loss is low. Four types of instabilities coupled by two modes may be distinguished: the first group features a lower frequency, arises when the injector pressure loss is low and corresponds to a weakly coupled chamber-plenum mode. The second group appears in the form of a constant amplitude limit cycle, or as bursts at a slightly higher frequency and is coupled by a chamber mode. Spontaneous switching between these two types of instabilities is also observed in a narrow domain.  相似文献   
992.
李光磊  杨纯斌 《中国物理C(英文版)》2019,43(5):054104-054104-13
A quark coalescence model, based on semi-relativistic molecular dynamics with color interactions among quarks, is presented and applied to pp collisions. A phenomenological potential with two tunable parameters is introduced to describe the color interactions between quarks and antiquarks. The interactions drive the process of hadronization that finally results in different color neutral clusters, which can be identified as hadrons based on some criteria. A Monte Carlo generator PYTHIA is used to generate quarks in the initial state of hadronization, and different values of tunable parameters are used to study the final state distributions and correlations. Baryon-to-meson ratio, transverse momentum spectra, pseudorapidity distributions and forward-backward multiplicity correlations of hadrons produced in the hadronization process, obtained from this model with different parameters, are compared with those from PYTHIA.  相似文献   
993.
A straightforward glycosylation method is described to regio- and stereoselectively introduce two α-l -fucose moieties directly to the secondary rim of β-cyclodextrin. Using NMR and MS fragmentation studies, the nonasaccharide structure was determined, which was also visualized using molecular dynamics simulations. The reported glycosylation method proved to be robust on gram-scale, and may be generally applied to directly glycosylate β-cyclodextrins to make well-defined multivalent glycoclusters.  相似文献   
994.
Histamine H4 receptor (H4R) orthologues are G-protein-coupled receptors (GPCRs) that exhibit species-dependent basal activity. In contrast to the basally inactive mouse H4R (mH4R), human H4R (hH4R) shows a high degree of basal activity. We have performed long-timescale molecular dynamics simulations and rigidity analyses on wild-type hH4R, the experimentally characterized hH4R variants S179M, F169V, F169V+S179M, F168A, and on mH4R to investigate the molecular nature of the differential basal activity. H4R variant-dependent differences between essential motifs of GPCR activation and structural stabilities correlate with experimentally determined basal activities and provide a molecular explanation for the differences in basal activation. Strikingly, during the MD simulations, F16945.55 dips into the orthosteric binding pocket only in the case of hH4R, thus adopting the role of an agonist and contributing to the stabilization of the active state. The results shed new light on the molecular mechanism of basal H4R activation that are of importance for other GPCRs.  相似文献   
995.
润湿特性对超级电容器储能性能有着至关重要的影响。借助分子动力学模拟,本文研究了润湿特性对超级电容器储能动力学行为的影响。以石墨烯和晶体铜作为疏电解液和亲电解液电极材料。结果表明,在充电过程中,亲电解液铜电极呈现出非对称的U型微分电容曲线,负极电容是正极的~5.77倍,不同于经典双电层理论Gouy-Chapman-Stern(对称U型)和疏电解液型。该现象与离子自由能阻力分布密切相关,负极自由能阻力远小于正极(~2倍)和疏电解液电极,进而有利于强化双电层结构对电极电压的响应能力,导致更高微分电容。通过微分离子电荷密度,本文再现了微分电容演变规律,并发现改善润湿性会显著降低双电层厚度。最后,我们指出润湿性直接影响储能微观机理,将电荷储存机制从离子吸附和交换共同主导(疏电解液)转变到离子吸附主导(亲电解液)。本文所得结论揭示了润湿特性对储能动力学行为影响的原子层级机理,对超级电容器材料设计、构筑与润湿特性调控具有重要指导意义。  相似文献   
996.
High-temperature (700–900 ℃) steam electrolysis based on solid oxide electrolysis cells (SOECs) is valuable as an efficient and clean path for large-scale hydrogen production with nearly zero carbon emissions, compared with the traditional paths of steam methane reforming or coal gasification. The operation parameters, in particular the feeding gas composition and pressure, significantly affect the performance of the electrolysis cell. In this study, a computational fluid dynamics model of an SOEC is built to predict the electrochemical performance of the cell with different sweep gases on the oxygen electrode. Sweep gases with different oxygen partial pressures between 1.01 × 103 and 1.0 × 105 Pa are fed to the oxygen electrode of the cell, and the influence of the oxygen partial pressure on the chemical equilibrium and kinetic reactions of the SOECs is analyzed. It is shown that the rate of increase of the reversible potential is inversely proportional to the oxygen partial pressure. Regarding the overpotentials caused by the ohmic, activation, and concentration polarization, the results vary with the reversible potential. The Ohmic overpotential is constant under different operating conditions. The activation and concentration overpotentials at the hydrogen electrode are also steady over the entire oxygen partial pressure range. The oxygen partial pressure has the largest effect on the activation and concentration overpotentials on the oxygen electrode side, both of which decrease sharply with increasing oxygen partial pressure. Owing to the combined effects of the reversible potential and polarization overpotentials, the total electrolysis voltage is nonlinear. At low current density, the electrolysis cell shows better performance at low oxygen partial pressure, whereas the performance improves with increasing oxygen partial pressure at high current density. Thus, at low current density, the best sweep gas should be an oxygen-deficient gas such as nitrogen, CO2, or steam. Steam is the most promising because it is easy to separate the steam from the by-product oxygen in the tail gas, provided that the oxygen electrode is humidity-tolerant. However, at high current density, it is best to use pure oxygen as the sweep gas to reduce the electric energy consumption in the steam electrolysis process. The effects of the oxygen partial pressure on the power density and coefficient of performance of the SOEC are also discussed. At low current density, the electrical power demand is constant, and the efficiency decreases with growing oxygen partial pressure, whereas at high current density, the electrical power demand drops, and the efficiency increases.  相似文献   
997.
Microsecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using 15N rotating frame (R) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1000 s−1, corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2 %. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (∼5–15 %) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of ∼100–300 μs. The slow backbone dynamics of the core residues were evaluated in the context of the structural model of human Y145Stop PrP amyloid.  相似文献   
998.
The excess concentration of cholesterol in the bloodstream can be brought down to a safer level by utilizing a potential cholesterol-binding agent such as a carbon nanotube (CNT). Here, we have probed solvent-mediated interactions between cholesterol and CNT by performing molecular dynamics simulations and potential-of-mean force (PMF) calculations. Simulations predict favorable interactions between water-mediated cholesterol and CNT owing to strong mutual interactions between them, whereas water plays an opposing role in the association. The breakdown of PMF into its enthalpic and entropic contributions indicates that contrary to traditional entropy-driven hydrophobic association, the cholesterol encapsulation within a CNT is primarily driven by enthalpy.  相似文献   
999.
Chemical groups are known to tune the luminescent efficiencies of graphene-related nanomaterials, but some species, including the epoxide group (−COC−), are suspected to act as emission-quenching sites. Herein, by performing nonadiabatic excited-state dynamics simulations, we reveal a fast (within 300 fs) nonradiative excited-state decay of a graphene epoxide nanostructure from the lowest excited singlet (S1) state to the ground (S0) state via a conical intersection (CI), at which the energy difference between the S1 and S0 states is approximately zero. This CI is induced after breaking one C−O bond at the −COC− moiety during excited-state structural relaxation. This study ascertains the role of epoxide groups in inducing the nonradiative recombination of the excited electron-hole, providing important insights into the CI-promoted nonradiative de-excitations and the luminescence tuning of relevant materials. In addition, it shows the feasibility of utilizing nonadiabatic excited-state dynamics simulations to investigate the photophysical processes of the excited states of graphene nanomaterials.  相似文献   
1000.
mTOR has become a promising target for many types of cancer like breast, lung and renal cell carcinoma. CoMFA, CoMSIA, Topomer CoMFA and HQSAR were performed on the series of 39 triazine morpholino derivatives. CoMFA analysis showed q2 value of 0.735, r2cv value of 0.722 and r2pred value of 0.769. CoMSIA analysis (SEHD) showed q2 value of 0.761, r2cv value of 0.775 and r2pred value of 0.651. Topomer CoMFA analysis showed q2 value of 0.693, r2 (conventional correlation coefficient) value of 0.940 and r2pred value of 0.720. HQSAR analysis showed q2,r2and r2pred values of 0.694, 0.920 and 0.750, respectively. HQSAR analysis with the combination of atomic number (A), bond type (B) and atomic connections showed q2 and r2 values of 0.655 and 0.891, respectively. Contour maps from all studies provided significant insights. Molecular docking studies with molecular dynamics simulations were carried out on the highly potent compound 36. Furthermore, four acridine derivatives were designed and docking results of these designed compounds showed the same interactions as that of the standard PI-103 which proved the efficiency of 3D-QSAR and MD/MS study. In future, this study might be useful prior to synthesis for the designing of novel mTOR inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号